
A scientific study partially funded by the Life Extension Foundation has demonstrated that the aging of human cells can be reversed. Published in the journal Regenerative Medicine, researchers succeeded for the first time in turning back the clock of aging in adult human cells. In an exclusive interview, Dr. Michael West explains the results of this unprecedented breakthrough.
Scientifically reviewed by: Dr. Gary Gonzalez, MD, in January 2021. Written by: Gregory M. Fahy, PhD and Saul Kent.
n Feb. 20, 2010, Gregory M. Fahy, PhD and Saul Kent interviewed Michael West, PhD, CEO of BioTime, Inc., about a new breakthrough published in the journal Regenerative Medicine. The paper reported the reversal of what Dr. West has called the “developmental aging” of adult human cells in the laboratory dish. Utilizing genes that grant our reproductive cells the potential for immortal growth, the researchers showed that it was possible to turn back the clock in human body cells, enabling the potential for young patient-specific cells of any kind for use in regenerative medicine. This research was funded in part by the Life Extension Foundation®. We asked Dr. West to elaborate on the details of his groundbreaking research, and to expound on the implications for the future of rejuvenative medicine.Fahy: Before we get to the details of your paper on the reversal of developmental aging, let’s set the stage. Your discovery relates to the field of regenerative medicine. What do you mean by regenerative medicine and how does it differ from medicine as it exists today?West: Well, the name “regenerative medicine” came from Bill Haseltine, then of Human Genome Sciences, one of the early leaders in genomics and DNA technology. Back in the 1990s, Bill learned that researchers in aging were making important progress on turning back the clock of aging in human cells through cloning, and then creating young cells that could potentially regenerate or repair all the tissues of the aged human body. And so, upon hearing of that realistic prospect, he christened the field “regenerative medicine” in the belief that it would one day become a major part of medical practice. So, based on its origins, I would define regenerative medicine as that collection of technologies that utilizes embryonic pluripotent stem cells and their derivatives to regenerate tissues in the body ravaged from disease, primarily degenerative disorders associated with aging.Click to enlargeFahy: The implication of the term is that we’re actually going to be able to regenerate or re-grow parts of the aging body because of this ability to turn back the clock of cellular aging.West: Yes. First, let’s talk about cellular aging. The problem with human biology is that the immortal reproductive cells that built you and me develop into differentiated cells within our bodies and as a result, lose the capacity to proliferate (divide) forever. So, the cells of the body are mortal, meaning they have a finite life span, and as our tissues age, or deteriorate from disease, our body has a finite capacity to regenerate and repair those tissues. As a result, we suffer progressive declines in function that lead to our death.Fahy: So, are you saying that an inadequate ability to generate new cells in the aging body is linked to the body’s inability to repair itself as we grow older?West: Every tissue is different, but that’s basically what I am saying. The goal of gerontology for many years has been to find the reason that our reproductive lineage continues to make babies generation after generation while the other cells in our body, called somatic cells, have a finite life span and are mortal, or, in other words, to discover the reason babies are born young. The answer is that we come from a lineage of cells that have been proliferating since the dawn of life on earth. The cells that made us have no dead ancestors. That recognition is causing a major shift in our thinking about aging, towards recognizing that aging may be more simple than we once thought. Although complex in the way it’s played out in thousands of genes and proteins, in reality, it may be that only a small number of central mechanisms cause the somatic cells in our body to age. So, the goal has been to discover a way of transferring the immortality of reproductive cells into the body in order to increase the potential life span of individual human beings.Fahy: What gives the germ line immortality, or as you put it, why are babies born young?West: Well, the first clue was published in 1986.1 Howard Cooke reported that specific regions of DNA at the ends of our chromosomes called telomeres are long and constant in length in our reproductive cells (sperm in particular in this case) with age, but shorten progressively in body cell types as we age.That publication led me to realize that an old theory of aging by Alexey Olovnikov from Russia now had scientific support. Olovnikov’s theory was that the difference between our reproductive cells and our body cells is that the ends of the DNA strands shorten over time in somatic or body cells, but are maintained at a long length in reproductive cells.2That shortening was considered by Olovnikov to be a clock of cellular aging, similar to the way the length of a fuse leading to a bomb can be a kind of clock—the longer it’s set, the longer it will burn before the bomb goes off. And, of course, the bomb going off here is the aging of somatic cells. Olovnikov proposed that there is an immortalizing enzyme that is shut off in body cell types, causing them to have a finite life span.Back around 1990, I became convinced the telomere hypothesis was correct, and founded Geron, where we isolated and purified this immortalizing enzyme, which we called telomerase. In 1998 we demonstrated that the addition of telomerase to body cell types such as skin cells or cells from the retina involved in macular degeneration stopped these cells from aging.3IMMORTAL CELLSEarly in the history of evolution, life existed as single cells, not unlike the protozoa swimming around in pond water today. These animals replicated by simply splitting into two new cells. They didn’t have to die and are therefore called “immortal.”In the following millennia, these immortal cells spun off specialized helper cells to help them compete in feeding and reproduction. These helper cells selflessly served the needs of the immortal cells and became what we call the “body” while the immortal cells became what we call the “germ line.” Since the immortal cells carried genetic information, they selected for the body to die after it served its purpose.Where are these immortal cells in you and me? In the adult human, they are the egg cells in a woman’s ovary, and the sperm-forming cells in the testicles of a man. When a sperm and egg unite, the resulting cells continue the germ line by forming a small cluster of immortal cells that go on to make new body and new immortal reproductive cells of a new human being, a cycle that continues forever.For the first time in the history of life on earth, the body cells have evolved a brain that is capable of understanding evolution and capable of deciphering the molecular mechanisms of cellular mortality and immortality. This conscious body is now plotting to take on the legacy of immortality for itself.Fahy: What are adult stem cells?![]() ![]() ![]() ![]() ![]() ![]() ![]() Chief Scientific Officer and Vice President, 21st Century MedicineSaul Kent Co-Founder, Life Extension FoundationA tsunami of aging is coming our way, which is going to be disastrous in its consequences, both to the individuals in need of healthcare and to the economies of countries that will be faced with escalating healthcare costs. In my opinion, we now have the science and technologies to prepare for this tsunami by developing new medical therapies within the next 10 years to reverse age-related degenerative diseases and profoundly influence the course of aging itself.In the face of this impending healthcare and economic crisis, many gerontologists are reaching out for capital to fund their research. To advance these novel therapies through regulatory approval will require significant capital expenditure. The day that these technologies can be used to treat human beings is entirely dependent on the number of scientists that can be employed to move development forward.I want to take this opportunity to thank the Life Extension Foundation for their financial help in the early stages of this project. Now it’s time for Congress to fund basic research in aging. The looming baby-boom population threatens to break the bank. Our future is in the balance.Fahy: Thank you, Dr. West, for this extremely important and strategic look into the future of therapies to combat aging. |
References |
1. Cooke HJ, Smith BA. Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1:213-9.2. Olovnikov AM. Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR. 1971;201(6):1496-9.3. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of cell lifespan by introduction of telomerase into normal human cells. Science. 1998 Jan 16;279(5349):349-52.4. Thomson JA, Itskovitx-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145-7.5. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci. 1998 Nov 10;95(23):13726-31.6. Cibelli JB, Kiessling AA, Cunniff K, Richards C, Lanza RP, West MD. Somatic cell nuclear transfer in humans: Pronuclear and early embryonic development. J Regen Med. 2001;2:25-31.7. Lanza RP, Cibelli JB, West MD. Human therapeutic cloning. Nat Med.1999;Sep5(9):975-7.8. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861-72.9. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec 21;318(5858):1917-20.10. Shiels PG, Kind AJ, Campbell KH, et al. Analysis of telomere lengths in cloned sheep. Nature. 1999 Sep;399(6734):316-7.11. Lanza RP, Cibelli JB, Blackwell C, et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science. 2000 Apr 28;288(5466):665-9.12. Kishigami S, Wakayama S, Hosoi Y, et al. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome. Exp Cell Res. 2008 Jun 10;314(9):1945-50.13. Jang G, Hong SG, Oh HJ, et al. A cloned toy poodle produced from somatic cells derived from an aged female dog. Theriogenology. 2008 Mar 15;69(5):556-63.14. Vaziri, H. Chapman, KB, Guigova, A, et al. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regen Med. 2010 Mar 16.15. Agarwal S, Loh YH, McLoughlin EM, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenital patients. Nature. 2010 Mar 11;464(7286):292-6.16. Feng Q, Lu SJ, Klimanskaya I, et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion an early senescence. Stem Cells Online. 2010 Feb 12.17. DePinho RA. The age of cancer. Nature. 2000 Nov 9;408(6809):248-54. |